Продлеваем жизнь жесткому диску. Установка охлаждения на HDD

Нуждается ли в охлаждении жесткий диск? Вряд ли на этот вопрос существует однозначный, единственно правильный ответ. Одни утверждают, что отсутствие дополнительного охлаждения HDD неминуемо приведет к его преждевременной кончине, другие говорят о том, что жесткие диски способны выдерживать намного более высокие температурные режимы и если бы вопрос об охлаждении был настолько критичен, производители сами устанавливали системы охлаждения в обязательном порядке. Однако все, наверное, сойдутся во мнении, что снижение температуры (до разумных пределов) как минимум не ухудшит характеристик того или иного компонента вычислительной системы, и жесткий диск не является исключением.

Сейчас на рынке присутствует огромное количество HDD-кулеров. Самый распространенный и недорогой вариант - установка обычного вентиляторного кулера. Лично для меня, как для ярого противника появления в компьютере дополнительного источника шума, "перспектива" установки подобного кулера являлась сугубо отрицательной. К тому же, не раз на своем веку приходилось наблюдать умершие накопители, чуть ли не со всех сторон обвешенные вентиляторами. Да и сам вентилятор, как и любое другое механическое устройство, имеет свойство ломаться, забиваться пылью, останавливаться, в конце концов, только ухудшая отвод тепла от HDD. Поэтому, однажды заприметив интересную систему охлаждения жесткого диска на основе тепловых трубок от компании Zalman, возникло желание заполучить такую "штуку".

И вот, Zalman ZM-2HC2 в руках, посмотрим, как он справляется со своими обязанностями.

Но обо всем по порядку. Итак, комплект поставки:

  • собственно, сама система охлаждения
  • инструкция
  • набор винтов для крепления

Тут стоит заметить, что кроме обычных винтиков-болтиков имеются еще и резиновые стойки, являющиеся связующим звеном между кулером и корпусом, железные части которых не являются единым целым, как может показаться на первый взгляд. Естественно, данное решение должно благотворно повлиять на вибро и шумоизоляцию. А учитывая отсутствие электрического контакта между корпусом HDD и "землей", производитель позаботился и об этом, укомплектовав устройство перемычкой, служащей для заземления HDD.

Кроме всего, в комплекте были обнаружены две наклейки с метками отверстий.

Сказать по правде, сразу было непонятно для чего они и куда их лепить. Но прочтение документации, хоть и простенькой, внесло ясность. Оказывается, кроме банальной установки сего монстра в 5,25" отсек, предусмотрена также установка на дно системного блока. И данные наклейки предназначены для облегчения этой процедуры.

Радиаторы выполнены из алюминия, тепловые трубки в количестве 11 штук - медные. Присмотревшись, можно понять технологию изготовления, а точнее, метод совмещения радиаторов и трубок в единое целое.

Для проведения тестирования, в качестве подопытного был выбран жесткий диск Seagate ST3320620AS - 320GB, 7200rpm, 16MB cache, SATA.

После установки системы охлаждения, внешний вид агрегата в сборе стал напоминать какой-то явно неотъемлемый блок межгалактического лайнера.

HDD устанавливался в корпус Foxconn 3GTS-002. Показатели температуры снимались при установке как в 3,5", так и в 5,25" отсеки с целью установить разность температур при нахождении HDD в различных частях корпуса.

Температура окружающей среды поддерживалась на уровне 20-21 градусов. Крышки корпуса были закрыты, никаких дополнительных вентиляторов в корпус не устанавливалось.

Для максимального разогрева использовались операции копирования больших объемов данных с одно раздела на другой, в частности:

  • копирование мелких файлов, общим объемом 24GB
  • копирование 35GB данных, каждый файл не менее 500MB
  • и напоследок, дабы заставить "шуршать" головки еще сильнее, две вышеуказанные операции запускались одновременно.

Показатели температуры головок снимались с помощью программы HDDLife . В принципе, можно использовать любую подобную программу (HDD Thermometer , HDD Temperature), поскольку все они получают данные, основываясь на информации S.M.A.R.T.

Кроме температуры головок, также производился замер температуры корпуса жесткого диска. Делалось это с помощью обычного тестера-мультиметра, имеющего выносной термодатчик. Конечно, полагаться на показания подобного прибора не имеет смысла, однако, в первую очередь нас интересовала разность температур, а не их точные показатели.

При установке в 5,25" отсек использовались две направляющие:

Первое, что было сделано - проверка разности температур в двух отсеках, без установки кулера. Упоминавшиеся файловые операции занимали по времени около полутора часов. В результате, максимальная достигнутая температура по показаниям S.M.A.R.T. составила 56°C, а температура корпуса HDD - 46°C. Причем показатели для разных отсеков были идентичны.

Пришло время и для Zalman ZM-2HC2. Кулер был прикреплен к жесткому диску и вся конструкция установлена в корпус. Тут возникла проблема. Дело в том, что в корпусе имеется система салазок и, кроме того, одна из сторон не имеет крепежных отверстий. Учитывая, что вся конструкция крепится к корпусу на гибких резиновых держателях, установить систему охлаждения в такой корпус без предварительной подготовки не представляется возможным.

Что же показали тесты. Как ни странно, но Zalman разочаровал. Температура не изменилась ни на градус и также составила 56 и 46°C для головок и корпуса HDD соответственно. Радиаторы и тепловые трубки нагревались примерно так же как и сам винчестер. Удалось заметить только то, что разогрев до максимальной температуры происходил дольше минут на 10-15. И еще один приятный момент - шум позиционирования головок на и так не особо шумном жестком диске стал практически не слышен.

Честно говоря, после таких результатов проводить какое-либо дальнейшее тестирование не было никакого желания. Но все же продолжим.

Следующей проверкой стала вибро и шумоизоляция. Для получения большего эффекта был взят другой накопитель, а именно ST360021A - 60GB, 7200rpm IDE (все дальнейшие тесты производились уже на этом диске), который будучи установленным в корпусе KME CX-5759, тарахтел как настоящий трактор.

Также были проведены и замеры температуры. Правда, теперь уже жесткий диск не разогревался по полной, а лишь работал в своем обычном, так сказать, "офисном" режиме. В 3х-дюймовом отсеке температура головок держалась на уровне 42°C. А вот после установки в 5,25"-отсек, температура выросла на 6°C. Теперь Zalman - все те же 48°C. Но с шумоизоляцией резиновые стойки справились на ура. Жесткий диск можно было услышать только в полнейшей тишине, и то прислушиваясь - определить чем занимается компьютер по шуму HDD как раньше, уже не получалось.

Но все-таки устройство называется Heatpipe HDD Cooler, соответственно, в первую очередь должно заниматься охлаждением. Что же не так?

Приняв во внимание то, что при использовании жесткого диска без кулера он имел прямой контакт с металлическими частями корпуса, и соответственно, рассеивал часть тепла через них, был проведен очередной опыт.

Жесткий диск лишался контакта с корпусом - он подвешивался в 5,25"-отсек на резинках, и таким образом висел в воздухе. И вот он! Маленький "триумф" Zalman - температура в таком режиме поднялась и держалась на отметке 50°C, иногда подпрыгивая до 51 (хотя при желании, эти 2-3 градуса вообще можно списать на погрешности). Также тяжело было не заметить, что HDD дошел до максимальной температуры за промежуток времени вдвое меньший. Это наводит на мысли, что с поглощением тепла у кулера Zalman как раз все в порядке, но проблемы с его рассеиванием в окружающую среду.

Для следующего эксперимента в корпус был установлен 12мм вентилятор производства все той же именитой компании, и запитан от 12В. Он занимался извлечением теплого воздуха из внутренностей ПК. Такой компьютер уже тяжело было назвать тихим.

После обеспечения циркуляции воздуха в корпусе компьютера, температуры снизились в среднем на 8°C. Отличие температур головок HDD при наличии и отсутствии системы охлаждения колебалось в диапазоне 1-2°C, что также нельзя назвать чем-то сверхординарным.

В конце концов, чтобы хоть как-то оправдать разработчиков этого, казалось бы, замечательного кулера, был проведен последний тест - установка накопителя на дно корпуса. Кстати, при такой установке, шум поглощался еще лучше.

Однако температурный режим остался неизменным - 42°C, как и при установке в 3,5"-отсек. Еще раз обращу внимание на то, что и в этом случае нет прямого контакта HDD и железных элементов корпуса.

После подключения к делу старого знакомого, 120мм вентилятора, температура снизилась, однако всего лишь на 4-5°C. Температура оказалась даже большей чем при установке в 3,5"-отсек (скорее всего, в данном случае это вызвано специфическим расположением вентилятора и самого диска).

После получения таких невразумительных результатов были предприняты попытки все же изменить положение дел. Использовался и накопитель другого производителя - Samsung SP0842N, тесты с которым не принесли ничего нового (кроме того, что средняя температура для этого накопителя составляла около 53°C), также устанавливался и обычный вентиляторный HDD-кулер Maxtron, с которым температура все же снизилась градусов на 8-10…

Заключение

Подводя итоги, хочется спросить у инженеров компании Zalman: почему на упаковке красуется слово Cooler? Тепловые трубки? Радиаторы? Все это, конечно же, очень хорошо, если бы результаты тестов не показали то, что они показали. Скорее это устройство стоило назвать виброшумопоглотитель. Судите сами. Что мы имеем? В самом начале, установленный накопитель в 3,5" отсек, где его температура в некоторых случаях может быть на 5-10°C ниже, чем в 5-дюймовом, а именно туда и прийдется перенести диск, при установке на него кулера.

Для ST360021A - это 42°C. Далее, при переносе этого накопителя в часть корпуса с более высокой температурой, его температура в свою очередь повышается до 50-51°C, а после установки системы охлаждения падает на 2-3 градуса. Итого получаем общее повышение температуры приблизительно на 6°C и полную тишину…

Из минусов также отметим слишком высокую стоимость для такого устройства - около 25-30$.

Из плюсов - интересный дизайн и внешний вид, а также отличную вибро и шумоизоляцию.

В конечном итоге, создалось такое впечатление, что вся эта алюминиево-медная конструкция служит для поддержания температуры накопителя на приемлемом уровне после лишения его контакта с корпусом компьютера, через который могла рассеиваться часть тепла, и использование его именно как кулера без дополнительного обдува не имеет смысла.

Вы хотите продлить жизнь своему жесткому диску? Вы готовы потратить лишние 5-10 долларов на систему охлаждения для него? Давайте разберёмся, какие вообще варианты есть.

Типов охлаждения не так много:

  • В первую очередь это, конечно же, воздушное охлаждение . Подавляющее большинство подобных систем представляют собой пластиковую или металлическую рамку с вентилятором, которая прикручивается к жесткому диску снизу. А питаниена вентилятор берется при помощи спецпереходникаот свободного разъема блока питания. Также встречается вариант с установкой в гнездо 5,25 (это куда DVD-привод умещается) специального переходника для крепления винчестера, а вентилятор (или вентиляторы) ставится вместо заглушки на «фасаде»
  • Во вторую очередь, это пассивные системы охлаждения . То есть просто специально сконструированный радиатор, который крепится к жесткому диску, соприкасаясь с греющимися частями «винчестера» и отводит тепло в окружающую среду «самотёком», за счет большой площади теплоотдачи.
  • Ну и в третью очередь можно упомянуть о жидкостных системах охлаждения . Но это — малоинтересная экзотика, практическое применение которой практически отсутствует. К достоинствам жидкостных систем можно отнести очень хорошую теплоэффективность и равномерность отвода тепла (Исключение составляют моддеры, оверклокеры и пр. «самоделкины»)

В силу своего призвания, частенько стал решать компьютерные проблемы связанные с износом жесткого диска. И поэтому речь в этой статье пойдет о том, как продлить жизнь диску с данными. Ведь после поломки HDD, не во всех случаях информацию можно спасти. Даже если вернуть ваши файлы реально, то в денежном эквиваленте ремонт в сервисных центрах будет сопоставим со стоимостью нового компьютера для офисных задач.

Рекомендаций по правильной эксплуатации жесткого диска довольно много, начиная от обеспечения хорошего питания (покупка дорогого блока питания), заканчивая минимизацией внешних вибрационных воздействий на диск. Но сегодня я буду делиться опытом облегчения жизни жесткого диска путем установки на него дополнительной системы воздушного охлаждения. Ведь, чем холоднее вращающиеся части, да и не только они, тем меньше они подвержены износу. В современных корпусах в передней части бывают установлены кулеры, которые гонят воздушный поток снаружи, внутрь компьютера, обдувая заодно жесткий диск. Но не всегда этого достаточно.

При выборе устройства охлаждения для hdd следует учесть, что в новых моделях корпусов с защелками в отсеках для дисков, может не хватить места для диска с закрепленным на него блоком охлаждения.
Перехожу непосредственно к описанию процесса. Кому то мой личный опыт не к чему и он сам все сделает, но для многих будет полезно почитать и посмотреть фото, перед тем, как самим во все это влезать.
Ну, приступим пожалуй. Не забываем перед началом работы обесточить системный блок!!! После снятия боковой стенки, вынимаем разъемы из жесткого диска.


Откручиваем крепежные винты, которые держат hdd в салазках. При необходимости придется снять вторую боковую крышку, что бы получить доступ к винтам с другой стороны корпуса. Но в моем случае корзину для дисков 3,5", можно извлечь из корпуса вместе с дисками, что согласитесь весьма удобно.

Прерву описание советами по выбору вентилятора для жесткого диска.
Первое - советую приобретать модель с двумя кулерами, т.к. установленные в такой системе вентиляторы вращаются в разные стороны. Один обдувает, другой выдувает нагретый воздух.
Второе - если все разъемы питания в вашем компьютере заняты, то в любом случае вам придется выбрать модель с переходником, что бы подключить одновременно вентилятор для HDD и второе устройство, ранее занимавшее этот разъем.
Ну и стоит еще присмотреться к характеристикам непосредственно самих кулеров. Если вы чувствительны к чрезмерному шуму от вращения вентиляторов, то вам стоит выбирать кулеры с более медленной скоростью вращения. Ну вы понимаете, чем быстрее вращаются лопасти вентилятора, тем более эффективнее охлаждение, но шуму от таких больше. А посему, выбирать нужно вам самим соотношение эффективность - шум.

Поехали дальше! Для выполнения операции по стыковке диска с вентилятором, первый должен уже быть извлечен из системного блока. Располагаем диск на ровную поверхность, лицевой стороной вниз, т.к. крепится охлаждение к нижней поверхности hdd, со стороны контроллера. Затем накладываем сверху вентилятор, совмещаем отверстия для крепления и заворачиваем винты.


Желательно все четыре штуки, что бы обеспечивалось плотное прилегание поверхностей и устройство ни дребезжало при работе.

И вот наше закреплено на жестком диске. Теперь возвращаем диск в корпус, главное что бы устройство охлаждения не мешало правильно закрепить накопитель. Если все отверстия совпали - поздравляю, вы правильно подобрали вентилятор HDD.
Далее нужно обеспечить питание кулеров системы охлаждения. Ищем свободный molex разъем и соединяем с разъемом вентилятора.

Если неиспользуемого разъема не нашлось, отключаем любое другое устройство, использующее такое же подключение. Подключаем на его место нашу новую систему охлаждения и затем подключаем старое устройство (отключенное в предыдущем предложении), на свободный разъем, который имеется на проводе от вентилятора, при условии что вы приобрели его (вентилятор) именно с таким переходником.

Последние манипуляции с разъемами, подключаем обратно жесткий диск. Надеюсь вы не забыли какие разъемы были использованы на вашем HDD.
На последнем фото вы видите окончательный результат несложной процедуры по установке охлаждения на hdd .

После запуска компьютера, визуально проверьте вращение крыльчатки, установленного вентилятора. Эффективность от проделанной работы можно проверить на ощупь, но лучше воспользоваться программой AIDA64 , которая имеет в своем составе функцию сканирования температур, составляющих частей компьютера. После установки и запуска этой программы нажмите на вкладку Компьютер и затем заходим в Датчики. Показания жестких дисков указывается в конце списка "Температуры". В моем примере три диска. В вашем случае может быть как угодно, скорее всего один.

Естественно, если вы хотите в цифрах зафиксировать на сколько холоднее стало вашему хранителю информации, эту программу нужно запустить перед установкой системы охлаждения, что бы посмотреть и запомнить температуру диска "ДО". И запустить AIDA64 "ПОСЛЕ". В этом конкретном примере, нагрев HDD получилось уменьшить на 11 градусов.
На этом повествовать прекращаю, хочется что бы эта статья была не просто чтивом, а руководством к действию. Берегите свою информацию, до ремонта диска лучше не доводить.

Сегодня в Интернете можно найти огромное количество материалов, посвященных проблемам воздушного охлаждения жестких дисков и подавления производимого ими шума. Найти можно практически все кроме последовательного систематизированного подхода к решению этой проблемы.

И решается она по-разному:

  • одни считают, что главное – охладить и обвешивают весь винчестер радиаторами, окружают мощнейшими воющими и ревущими вентиляторами, а шум считается побочным явлением, не заслуживающим внимания;
  • других раздражает подобный шум, и они пытаются каждый по своему бороться с ним, причем нередко в ущерб охлаждению;
  • а многие и вовсе не представляют последствий перегрева и не обращают внимания ни на запредельные температуры, ни, тем более, на шум.

реклама

Почему так?

Дело, скорее всего в том, что мало кто в достаточном объеме знаком с путями решения проблем как эффективного охлаждения и подавления шума производимого жестким диском (да и компьютерной системой в целом).

Такое состояние дел и обусловило появление данной статьи. Основная цель ее – оказать посильную помощь в уяснении, осмыслении и систематизации общих принципов и путей комплексного решения проблем, как охлаждения жесткого диска, так и подавления производимого им шума.

В данной статье:

  • по возможности кратко, популярно или даже вовсе аксиоматично изложены сведения и минимальные основы, необходимые для понимания рассматриваемого материала и подходов к выбору конкретных конструктивных решений;
  • приведена попытка не только анализа и классификации методов и способов воздушного охлаждения жесткого диска и снижения производимого им шума, но и анализа эффективности решений используемых в типовых устройствах охлаждения и снижения шума жестких дисков;
  • показан пример комплексного подхода к решению проблемы охлаждения и снижения шума жесткого диска, как при выборе конкретного готового устройства, так и при практической разработке и изготовлении самодельной конструкции.

Хочется надеяться, что статья будет полезной всем желающим получить наиболее сбалансированное решение по охлаждению жесткого диска, производящее минимум шума и не допускающее перегрева диска даже при экстремальных условиях эксплуатации и нагрузках. Причем как тем, кто ориентируется на готовое решение, так и тем, кто для наиболее эффективного решения задач по данной теме готов проявить смекалку в доработке готовых решений, смастерить что-нибудь свое.

реклама

Примечания

Многие используемые в статье термины в настоящее время имеют достаточно много толкований. Поэтому в таких случаях будем особо оговаривать их смысл и содержание, используемые в статье.

Для акцентирования внимания читателей используются следующие знаки:

ОСНОВЫ ОХЛАЖДЕНИЯ

Жесткий диск нагревается как элементами электроники, так и элементами электромеханики. Причем больше тепла выделяют, пожалуй, элементы механики, например, такие как катушка позиционера в банке с механикой (гермоблоке) или электродвигатель. Электроника тепла выделяет меньше, но отдельные микросхемы из-за малых размеров обычно разогреваются до большей температуры, чем гермоблок.

От повышенных температур медленно деградируют не столько электронные компоненты контроллера или поверхность пластин, сколько элементы механики. Срок службы жесткого диска сокращается. Повышенная температура губительно действует на подшипники, места соединения движущихся частей и, особенно, на головки чтения-записи. Очень же сильный нагрев может привести к немедленному отказу жесткого диска.

А каковы же должны быть рабочие температуры?

Мнений тут много, но многие сходятся к тому, что с точки зрения срока службы жесткого диска оптимальной температурой банки можно считать (35…45)°С, а рабочая температура для большинства современных микросхем согласно документации на них значительно больше и может достигать 125 °С

Конечно, если имеются уж очень сильно греющиеся чипы, то срок службы электроники может значительно сокращаться. Но это явление достаточно редкое и скорее относится к просчетам разработчиков.

Кроме того, производители дисков, как правило, ограничивают еще и скорость изменения температуры окружающей среды или скорость изменения температуры охлаждающего воздуха, что при воздушном охлаждении фактически одно и то же, значениями не более (15…20) °С/час. В документации на жесткие диски различных производителей эта скорость изменения обычно обозначается как “temperature gradient” или “перепад температур”. См., например, п. 7.2.1 Temperature and humidity или п. 2.8.2 Temperature gradient , или п. Перепад температур .

Обычно вовсе не трудно ограничить нагрев банки и микросхем электроники жесткого диска на указанных выше уровнях. А вот не превысить указанную скорость изменения температуры окружающей среды посложнее. Особенно в первые (10…15) минут после включения системного блока, когда скорость нагрева воздуха в нем весьма высока. Изменение температуры воздуха вокруг жесткого диска за такое время не должно превышать (3…5) °С. Хотя на первый взгляд это и немного "лишка". Но….

Превышение рассмотренных параметров часто проявляется там, где в угоду минимизации общих шумов системного блока необдуманно сокращается количество вентиляторов и их скорость вращения. Нередко в корпусах, у которых площадь воздухозаборников для организации охлаждения жестких дисков недостаточна или же их и вовсе нет, жесткие диски оставляют “вариться в собственном соку” вовсе не задумываясь об их охлаждении.

Вывод. В общем случае необходимо не только достойно охлаждать как банку с механикой, так и электронику диска, но и не допускать превышения температурного градиента охлаждающего воздуха. Т.е. создавать некоторое устройство или систему охлаждения, выполняющую эти (и не только) задачи.

Система – нечто целое, представляющее собой единство закономерно расположенных и находящихся во взаимной связи частей.

реклама

Как же вообще можно отобрать тепло у HDD?

Из теории известно, что количество тепла за единицу времени или тепловой поток q, отбираемый от любой охлаждаемой поверхности (чипа, жесткого диска и т.д.), описывается формулой Ньютона:

q=α*S*ΔT (1)

  • q - количество теплоты за единицу времени (единица измерения Дж/c или Вт),
  • α - коэффициент теплоотдачи, Вт/м²К,
  • S - площадь поверхности теплообмена, м²,
  • ΔT=Т-Твозд - перегрев или перепад температур между температурой охлаждаемой поверхности Т и температурой теплоносителя Твозд (температура воздуха при воздушном охлаждении), К.

Проще говоря, формула гласит, что количество тепла, отбираемое от любой охлаждаемой поверхности, прямо пропорционально:

  • разнице температур между температурой охлаждаемой поверхности и температурой воздуха;
  • площади охлаждаемой поверхности;
  • коэффициенту теплоотдачи.

реклама

Выводы:

Улучшить охлаждение винчестера (увеличить количество отводимого тепла), можно всего-то только тремя методами:

  • уменьшением температуры охлаждающего воздуха;
  • увеличением площади поверхности теплообмена;
  • увеличением коэффициента теплоотдачи.

Комбинированное использование этих методов резко повышает эффективность системы охлаждения жесткого диска.

А как это выглядит на практике?

Увеличение площади поверхности теплообмена

реклама

Площадь теплообмена обычно увеличивают с помощью радиаторов.

Из видно, что теоретически для увеличения скажем вдвое теплового потока (или, что то же самое, двукратного уменьшения перегрева), необходимо так же вдвое увеличить площадь теплообмена.

Практически же из-за того, что как свойства самих радиаторов, так и передача тепла от диска к радиатору неидеальны, требуется более чем двукратное увеличение площади теплообмена для двукратного уменьшения перегрева.

Кроме того, у HDD почти нет ровных поверхностей пригодных для установки толковых радиаторов.

реклама

Хотя вроде нет. Практически у всех жестких дисков имеется плоская поверхность, образованная тонкой жестянкой – крышкой гермоблока, на которую можно лихо приспособить солидный радиатор.

Но так как все греющиеся элементы закреплены на литом массивном основании, то отвод тепла от него по тонюсенькой жестянке с наклеенной бумажкой к радиатору сразу выглядит неперспективно. Путь же через воздух внутри банки и жестяную крышку тоже особо не прельщает.

Но выглядит это куда перспективнее, чем охлаждение через тонкую жестяную крышку. Особенно если не жалеть термопасты между радиатором и боковой поверхностью жесткого диска.

реклама

На практике отвод тепла от боковых поверхностей HDD наиболее распространен.

Можно, конечно, выровнять и отшлифовать боковые поверхности винчестера (потеря гарантии!!!). Потом установить на них вполне приличные радиаторы.

При таком раскладе охлаждение диска через боковые поверхности происходит довольно эффективно, но не оптимально:

  • улучшение теплообмена наблюдается только через боковые поверхности, общая площадь которых составляет менее 1/6 части от общей площади поверхности банки;
  • неравномерное охлаждение механики, т.к. не лучшим образом охлаждаются элементы, расположенные в середине банки вдали от радиаторов (боковых стенок);
  • без дополнительного охлаждения остается электроника (хотя? на наиболее горячие чипы так же можно, а в некоторых случаях и нужно приспособить радиаторы).

Ну, а установка еще и на нижнюю, как правило, весьма кривую поверхность множества мелких радиаторов достаточно трудоемко.

реклама

Однако в последнее время получили распространение мягкие теплопроводные прокладки. Они легко деформируются и позволяют передавать тепло от неровных поверхностей жесткого диска к радиатору.

Примером такой конструкции служит HDD кулер CoolerMaster DHC-U43 CoolDrive 3 . Его конструкция отличается от конструкций «бескорпусных» охладителей наличием алюминиевого кожуха-воздуховода. ? Он служит еще и радиатором, увеличивающим площадь теплообмена.

Для охлаждения сразу нескольких винчестеров служат устройства типа LIAN LI EX-332 HDD Mount Kit, устанавливаемые в свободные 5,25” отсеки.

Такого типа “корзины” имеют увеличенный зазор между дисками, закрыты сверху и снизу и позволяют обеспечить воздушный поток равномерно “облизывающий” практически всю площадь поверхности жестких дисков и позволяют организовать толковое охлаждение, как электроники, так и равномерное охлаждение банки с механикой.

Кроме того, такого типа “корзины” нередко оснащаются воздушными фильтрами и резиновыми амортизаторами для борьбы с шумами жестких дисков.

Формирование воздушного потока

В только что рассмотренных системах охлаждения жестких дисков вентиляционные решетки, воздухозаборники, сами жесткие диски и т.д. всегда являются препятствиями на пути движения воздушного потока, формируемого вентилятором, которому приходится создавать некоторое давление для преодоления сопротивления воздушному потоку.

Причем чем больший воздушный поток необходим для отвода тепла, и чем больше степень турбулентности этого потока, тем больше система охлаждения противодействует прохождению этого потока воздуха, тем большую работу приходится совершать вентилятору создающему этот поток. И тем более мощный требуется вентилятор для преодоления сопротивления. Соответственно растет создаваемый шум.

А поскольку сами вентиляторы (независимо от скорости вращения) формируют воздушный поток с высокой степенью турбулентности, то сопротивление системы с “нагнетающим” вентилятором на входе оказывается больше сопротивления системы с “ вытяжным” вентилятором на выходе.

В результате охлаждающие системы жестких дисков с “вытяжным” вентилятором по сравнению с системами с “нагнетающим” вентилятором имеют следующие преимущества:

  • при одинаковых оборотах одинаковых вентиляторов несколько большую величину воздушного потока и, следовательно, несколько лучшее охлаждение;
  • при одинаковом охлаждении требуются меньшие обороты одинаковых вентиляторов и, следовательно, получается меньший шум.

Толщина воздушного потока

Суммарная толщина воздушного потока с использованием “вытяжной” вентиляции в системе охлаждения HDD не должна быть слишком большой, так как слои воздуха наиболее удаленные от охлаждаемой поверхности мало участвуют в процессе охлаждения.

одной стороны, тут при неизменном расходе воздуха, чем тоньше воздушный поток, тем выше его скорость и, следовательно, лучше охлаждение диска (см. п. ). Но в этом случае с уменьшением площади поперечного сечения воздушного потока растет сопротивление воздушному потоку, требуется более мощный вентилятор, растет шум.

другой стороны, если воздух нагревается в основном вблизи поверхности жесткого диска, то средняя температура избыточно толстого воздушного потока, прошедшего через систему охлаждения винчестера, возрастет весьма незначительно, и такой воздушный поток можно будет использовать для охлаждения других компонентов системного блока. Но прокачка избыточного воздуха опять же источник избыточного шума.

Практика показала, что в большинстве случаев оптимальная толщина потока вокруг типовых 3,5” дисков составляет 8-12 миллиметров. Со стороны тонкой жестяной крышки гермоблока эта величина может быть уменьшена до 5-8 миллиметров.

Для 2,5” дисков ввиду меньшего тепловыделения толщины потоков могут быть меньше. Конкретные значения оптимальной толщины потока вокруг 2,5” дисков автор дать не может, т.к. экспериментов с такими дисками не проводил.

При использовании “нагнетающей” вентиляции воздушный поток получается с очень высокой степенью турбулентности по всему поперечному сечению, и толщина его может быть в несколько раз больше. Но опять же прокачка избыточного воздуха - источник избыточного шума.

Да, а сколько ж надо этого воздуха для охлаждения диска?

Расход воздуха

Существует простая формула, которая позволяет с достаточной точностью рассчитать поток воздуха Q в кубических футах в минуту CFM (cubic feet per minute), требуемый для отвода от винчестера тепловой мощности W в Ваттах при допустимом перегреве ΔT в градусах Цельсия:

Q = 1,76*W /ΔT (2)

Данное соотношение однозначно показывает, какой производительностью Q должна обладать система охлаждения для отвода с помощью конвективного теплообмена требуемой тепловой мощности W при заданном перегреве ΔT.

Другие виды теплообмена - теплообмен теплопроводностью (передача тепла через непосредственный контакт с корзиной или, например, стенками корпуса) и лучистый теплообмен (перенос тепла излучением) здесь во внимание не принимаются. Тем более что при наличии прокладок и шайб, специальных амортизирующих, виброизолирующих креплений или мягкого подвеса жесткого диска для уменьшения шума, вклад этих двух механизмов в процесс теплообмена становится и вовсе мизерным. Поэтому их и можно не учитывать.

Для примера прикинем значение воздушного потока, необходимого для отвода среднестатистических (7…15) Вт тепла от жесткого диска с перегревом в зависимости от поставленных задач (5..15) °С.

Расчетное значение составляет

Q = 1,76 * (7…15) / (5..15) = (1…5) CFM.

На основании найденного значения подбираются соответствующие вентиляторы, и конструируется воздушный тракт охлаждающей системы. Однако сразу надо сказать, что в правильной системе охлаждения величину воздушного потока для охлаждения одного диска может обеспечить практически любой вентилятор даже при пониженном питании.

Правда из-за худшего прогрева удаленных от охлаждаемой поверхности слоев воздуха и прокачки излишнего воздуха вовсе мимо жесткого диска, как правило, требуется несколько большее значение воздушного потока. Причем чем толще воздушный поток, тем больше прокачивается излишнего воздуха. Турбулентный поток прогревается равномернее, поэтому он экономнее ламинарного потока.

Уменьшение температуры охлаждающего воздуха

Здесь все просто.

На сколько градусов уменьшается температура охлаждающего воздуха, настолько же уменьшается температура винчестера.

Таким образом, обычные варианты с охлаждением винчестера воздухом, нагретым внутри корпуса, не являются оптимальными, хотя иногда они реализуются попроще.

Если исключить такую “экзотику”, как, например, установку системного блока в холодильник или использование зимой уличного воздуха для охлаждения, то для охлаждения винчестера оптимально воспользоваться забортным воздухом, т.е. воздухом, взятым снаружи системного блока, а не изнутри его, где воздух по определению теплее.

Системы, обеспечивающие приток свежего и холодного воздуха внутрь системного блока

Для создания притока воздуха для охлаждения диска обычно используются вентиляторы общей системы охлаждения в блоке питания, на задней или верхней стенке корпуса и т.д.

Такие решения используются сейчас во многих современных корпусах.

При “вытяжной” вентиляции, т.е. создающей в корпусе некоторое разряжение воздуха, часть воздуха засасываемого через вентиляционные отверстия направляется на жесткий диск.

При “нагнетающей” вентиляции, создающей в корпусе некоторое избыточное давление воздуха для обдува диска обязательно должен использоваться отдельный дополнительный вентилятор, расположенный перед диском.

Одновременно этот же вентилятор используется и в общей системе охлаждения для нагнетания воздуха в корпус.

Иногда используются специальные лотки-переходники для установки 3,5-дюймовых жестких дисков в 5-дюймовые отсеки корпуса.

На передней панели у них имеется вентилятор для обдува диска забортным воздухом.

Существуют такие устройства и для установки нескольких дисков .

Использование для охлаждения забортного воздуха позволяет не только автоматически выполнить требования по , но и на несколько градусов уменьшить температуру диска.

Системы, обеспечивающие передачу тепла на наружную поверхность корпуса, охлаждаемую забортным воздухом

Такие решения используются сейчас довольно редко. В основном в безвентиляторных системах охлаждения, например, в корпусе Zalman TNN500A.

Здесь винчестер имеет тепловой контакт с боковой стенкой играющей роль радиатора, охлаждаемого забортным воздухом.

Однако на практике такое решение ввиду быстрого нагрева воздуха в корпусе после включения, как правило, не позволяет выполнить требования по .

Вот что вспомнилось из того, что волей-неволей придется учитывать при разработке действительно эффективной и малошумящей системы охлаждения. Вот и поговорим о шуме.

Продолжение следует...